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ABSTRACT
Bees are phytophagous insects that exhibit recurrent ecological specializations
related to factors generally different from those discussed for other phytophagous
insects. Pollen specialists have undergone extensive radiations, and specialization
is not a always a derived state. Floral host associations are conserved in some
bee lineages. In others, various species specialize on different host plants that
are phenotypically similar in presenting predictably abundant floral resources.
The nesting of solitary bees in localized areas influences the intensity of inter-
actions with enemies and competitors. Abiotic factors do not always explain the
intraspecific variation in the spatial distribution of solitary bees. Foods stored
by bees attract many natural enemies, which may shape diverse facets of nesting
and foraging behavior. Parasitism has evolved repeatedly in some, but not all,
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bee lineages. Available evidence suggests that cleptoparasitic lineages are most
speciose in temperate zones. Female parasites frequently have a suite of charac-
ters that can be described as a masculinized feminine form. The evolution of
resource specialization (including parasitism) in bees presents excellent oppor-
tunities to investigate phenotypic mechanisms responsible for evolutionary
change.

PERSPECTIVES AND OVERVIEW

The >20,000 species of bees are allied to nest-building wasps and ants
(Hymenoptera: Aculeata) (77). Bees arose within an assemblage of hunting
wasps (sometimes known as Sphecoidea) that abandoned arthropods as the
food source for their young in favor of using floral resources. Most bees are
solitary (140, 160, 164, 167, 174, 202), although they may nest in aggregations.
Unless indicated otherwise, when we refer to “bees,” we mean solitary bees
(for social species, see 140).
After a natural history overview, we focus on the following topics:

1. Some bees nest in isolation, while others nest gregariously. These spatial
associations of conspecifics are likely to influence intraspecific competition
and interactions with natural enemies (cf 232).

2. Many solitary bee species are resource specialists for pollen and oil, but
rarely for nectar. The patterns and mechanisms of floral-host specialization
by bees are governed by factors generally different from those affecting
other insect specialists (see 14, 15). The interests of bees, unlike those of
herbivores, are more congruent with those of the plant.

3. Numerous parasites attack adult bees, their offspring, or their stored food.
Nest architecture, and foraging and nesting behavior, are hypothetically
influenced by natural enemies, but this has not been tested critically. Major
enemies of bees are other bees that are either facultative or obligate para-
sites. The great diversity of obligately parasitic bees, with their convergent
morphology, allows us to study the evolutionary origins of behavioral
flexibility and novel expression of condition-sensitive traits.

For brevity, we cite only more recent or comprehensive papers and recom-
mend that interested readers use these bibliographies to find references to
earlier works.

APOIDEA—WHAT ARE BEES?

Terminology

Solitary females store food in individual cells for their offspring. Most have
no regular interactions with conspecifics, including offspring (for exceptions,
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see e.g. 139). Cleptoparasites do not collect oil or pollen but rather invade
nests of solitary bees and deposit eggs in the cells or on stored provisions (18,
224); the parasite’s offspring consume the stored resources. Oligolecty de-
scribes persistent and apparently heritable provisioning behavior in which a
bee species, throughout its range, restricts itself to gathering pollen from a few
related plant genera (51, 118, 134, 170); these bees are specialists. Polylectic
bees are generalists that collect pollen from plants of more than one family.
Generalists usually are constant to a particular plant species over a short time,
but the preference changes in response to past experience and perceived re-
wards (58, 65, 81, 221). Oligoleges can also be flower constant, but they have
a narrower range of acceptable hosts (51, 217). As with other classes of
specialization, the dichotomy between oligolecty and polylecty is for classifi-
cation purposes only.

Overview of Natural History

Some bees excavate nests in the soil, in living or rotting wood, or even in
sandstone (13), whereas others construct nests from plant or earthen materials,
usually in preexisting cavities, including snail shells or tunnels made by other
boring insects (104, 135, 138, 160, 167, 174, 202). Representative illustrations
of bees’ nests appear elsewhere (104, 167, 174, 202). Nests contain one or
more cells, either distributed throughout a branched tunnel system or clustered
together. The mother usually coats the walls of each cell, or sometimes the
polien mass, with a hydrophobic secretion from her Dufour’s gland (see section
on antiparasite strategies). She provisions it with a mixture of pollen and nectar
or oils collected from flowers in an area surrounding the nest (see 196),
sometimes supplemented with glandular secretions (references in 59, 95). She
lays an egg on, in, or, rarely, under the mass and seals the cell.

Life-history and diapause patterns are not well documented. Most temperate
bees pass an unfavorable season as immatures, usually as postdefecating larvae
(prepupae) (for exceptions, see 92, 139). Others diapause as adults (examples
in 157). Frequently, species are typologically classified by the number of
generations per season, and until recently, individual variability was neglected
in these classifications. Facultative diapause (parsivoltinism) occurs (refer-
ences in 157) and may be a bet-hedging strategy related to unpredictable
resource availability (156) or to the abundance of natural enemies. Physiologi-
cal mechanisms of apoid diapause are not well studied (see 133).

Classification of Apoidea

The superfamily Apoidea contains more than just bees. It includes some,
though not all, of the carnivorous spheciforme wasps {= Sphecidae (sensu 22)],
but which spheciforme lineage is the most closely related to bees is unknown
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(reviewed in 5, 30). Bees constitute a monophyletic group, as evidenced by
several shared derived characters (reviewed in 5, 147).

Origin and Evolutionary History

Michener (142) speculated that bees arose in the xeric interior of West Gond-
wanaland, presumably concurrent with, or soon after, the radiation of angio-
sperms (211). Early apoid history is speculative, because fossils older than
those from the Cenozoic are rare or nonexistent (references in 168). Fossilized
remains of bee activity include putative nest burrows or cells, as well as leaves
with disc-like sections removed as if cut by megachilid bees (reviewed in 24).

Phylogeny and Classification of Apiformes

Two informal groups, referred to as short-tongued (S-T) and long-tongued
(L-T), are used to classify bees (145). The phylogenetic relationships among
S-T bees remain unresolved, but phylogenetic hypotheses for the major line-
ages of L-T bees have led to major changes in classification (171). Michener
and coworkers (147, 171) provide higher taxonomic classifications for the
genera mentioned here.

Diversity and Distribution

Faunal studies, though limited and idiosyncratic, show that bees abound in
most habitats on all continents except Antarctica (see 142, 157, 174). Generic
diversity is greatest in the Neotropical region, but bees are more speciose in
xeric, temperate regions (8, 142, 175). Given that tropical angiosperms are
diverse, especially in the Old World (207), the relatively depauperate tropical
bee fauna is surprising. From a behavioral and ecological perspective, however,
tropical bees may be more diverse relative to temperate-zone bees (175).

Several hypotheses may account for the less speciose tropical fauna, but
none have been rigorously tested. All the surmised factors may play some role.
The apparently lower diversity may relate to the following: competitive ex-
clusion by honey bees (Apis spp.) and by the abundant and speciose social
stingless bees (Meliponini) (90, 174); increased fungal attack and food spoil-
age, including the tendency of provisions to become hygroscopic (134); or
increased predation and parasitism (cf 110).

DISTRIBUTION OF POLLEN SPECIALISTS AND CLEPTOPARASITES The relative
diversity of oligolectic bees appears low in the tropics (see 89, 142, 174).
Generalist species apparently predominate in most temperate biomes, except
in xeric and Mediterranean-climate temperate regions (150). However, as most
surveys do not examine pollen loads and as different authors use different
definitions, conclusions are tentative.
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Parasitic bees are also apparently rarer at lower latitudes (224; but see 90).
A reported correlation (224) between the proportion of parasitic species in a
given fauna and the latitude of the region surveyed may be biased because the
analysis used species as independent data points. Analyses using higher taxo-
nomic levels are currently unreliable, because at least some genera of parasitic
bees are arbitrary rather than phylogenetically based. This geographic trend in
parasitism is not a collecting artifact (224), and findings implicate seasonality
and host synchrony in the evolution of parasitism (see 159, 224).

HOST LOCALIZATION IN TEMPORAL ENVIRONMENTS The apparent latitudinal
decrease in relative abundance of both parasitic and oligolectic bees may be
related to the common problem of localizing a specific resource in a spatially
and temporally complex environment (see 15). Spatial or temporal unpre-
dictability in flowering phenology can be substantial in tropical forests (see
12, 27). Unfortunately, long-term studies of spatial and temporal abundance
of solitary tropical bees are uncommon (e.g. 219a). If synchronization with
host activity is important for these specializations, then they should be rela-
tively more common in tropical dry forests, where resource availability is more
seasonal, than in wet forests (references in 12, 27). The greater percentage of
oligolectic bees in Costa Rican dry forest (89), relative to bees in French
Guiana (142), is consistent with these predictions. No pertinent data are avail-
able for parasitic species.

HABITAT PREFERENCE AND AGGREGATIONS OF
NESTS

Many solitary bees have habitat preferences for nesting and often choose sites
near flowers (e.g. 76, 118, 126, 164, 202). Insufficient information is available
to assess any degree of preference: Few studies sample and describe suitable
nesting habitats where floral resources occur but the bees do not. Numerous
bees nest in aggregations (e.g. 62, 118, 164), which range in size from several
to many nests per square meter (49). One aggregation contained an estimated
423,000 nests in 1300 m? (186). Aggregations can persist for more than 20
years (149, 176, 230) or die out a few years (126). Some bee species disperse
from their natal sites and then form ephemeral aggregations at unpredictable
locations (e.g. 64). Congeners exhibit different degrees of philopatry and the
tendency to aggregate nests (compare 35 with 2 and 186).

Proximate Mechanisms for Gregarious Behavior

Nest aggregations might arise because of (a) limited suitable nesting habitats
(e.g. 222), (b) a tendency for offspring to nest in natal areas (e.g. 146), or (¢)
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a tendency for individuals to nest near conspecifics (e.g. 64). The mechanisms
responsible for gregarious behavior are poorly understood (see 38, 146, 223),
Different species prefer different soil compositions, temperatures, or moisture
levels (38, 146, 202). Moreover, some species favor vertical, and others hori-
zontal, surfaces (references in 126, 138). However, in general, no obvious
abiotic factors correlate with the locations of aggregations within a suitable
habitat (38, 146).

For bees with persistent aggregations, an investigator can use genetic studies
of population structure (e.g. 17) to determine whether hypothesis b or ¢ applies.
The mechanisms by which females learn the characteristics of their natal
habitat upon emergence have not been studied, even though Fabre (71) long
ago suggested they were important. Mandibular gland secretions may serve as
aggregation pheromones (e.g. 59). Indeed, anecdotal observations suggest that,
after initial colonization, ephemeral aggregations form via a self-organization
process resulting from the increase in chemical attraction to a site as more
females nest there (e.g. 64), analogous to the growth of urban populations (6a).

Evolutionary Benefits of Gregarious Behavior

The benefits associated with gregarious behavior are obscure and may differ
for perennial and annual aggregations (for costs, see section on natural enemies
of bees). One hypothesized benefit is that individuals form a so-called selfish-
herd as cover from enemies (223). Available evidence is equivocal (reviewed
in 172; also 54, 88). Whether bees gain information about foraging sites by
following conspecifics from a central place, as known in some birds (e.g. 31),
needs to be investigated.

RESOURCE SPECIALIZATION

Nonparasitic bees are prone to resource specialization. Factors associated with
specialization in other phytophagous insects (e.g. detoxification) (reviewed in
14, 15, 84, 104a, 212) are less relevant for bees. Resource specialization by
bees differs in its mechanisms, evolutionary causes, and ecological implica-
tions.

A few species specialize on a single species of pollen host (monolecty) (40,
66, 101, 152, 170, 187, 213). Because usually only one phenotypically similar
plant congener is available locally (e.g. 170), these species may simply be
without access to closely related hosts (also 118, 150). Where closely related
pollen hosts bloom together, specialists typically use all of them (e.g. 217).

Specialist bees will occasionally provision nests with nonpreferred pollen
if their host is temporarily unavailable (127, 161, 213). They then abandon
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alternative plants when the host blooms (43, 148). We do not know whether
emergency resources are nutritionally adequate for larval development.

Phylogenetic Origins of Oligolecty

Without an independently derived phylogeny, it is impossible to discern
whether oligolectic or polylectic habits are primitive or derived within a given
taxon. Like specialization in other insects and cleptoparasitism among bees,
oligolecty has multiple independent evolutionary origins.

TAXONOMIC DISTRIBUTION OF OLIGOLEGES  Pollen host specialization, which
is unevenly distributed among higher bee taxa, is frequent in Rophitinae,
Colletidae (other than Hylaeinae), Andrenidae, Melittidae, Megachilidae [in-
cluding Fideliinae (236)], and nonsocial Apinae (118, 167). Most genera within
these taxa contain both oligolectic and polylectic species (99). Polylecty is
frequent in the Xylocopinae, Oxacidae, Halictinae, presumably the Euglossini,
and probably the Hylaeinae (118, 167). Pollen preferences of some colletids
are not well known because these bees transport pollen internally; some eury-
glossines are oligolectic (96).

POLYLECTIC ANCESTRY  Some oligoleges, including Ceratina sequoiae (52)
and several halictines (e.g. 21, 69), occur in otherwise polylectic taxa. These
oligolectic taxa are presumably not basal within their clades, and thus their
classification supports the usual supposition that specialists descend from
generalists.

OLIGOLECTIC ANCESTORS ON RELATED HOSTS  Specialization on related hosts
is sometimes conserved through multiple speciation events. Diverse genera
exemplify evolutionarily conserved associations (Table 1), even across enor-
mous geographic ranges (e.g. 166). Geographic ranges overlap for some spe-
cies in these conservatively oligolectic genera (references in 102), an
observation at odds with the tenets of competition exclusion.

OLIGOLECTY AND HOST SWITCHING ~Another pattern for entirely oligolectic
lineages is that, as a group, related taxa may specialize on several unrelated
plant families; however, any one species may be more restricted in its resource
utilization. Oligolectic bee genera associated with multiple host families in-
clude Diadasia (5 plant families) (123, 124, 158), Melitta (8+ plant families)
(41, 205, 235), Dufourea (17 plant families) (25, 60, 66, 127, 128, 217, 235;
T Griswold, personal communication), Micralictoides (4 plant families) (19),
Conanthalictus (2 plant families) (188; T Griswold, personal communication),
Andrena (Diandrena) (3 plant families) (213), Hesperapis (including Capi-
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Table 1 Oligolectic bee taxa whose species share a common genus of pollen host*

No. of
Bee family Genera species  Pollen host genera  Plant family
Colletidae Leioproctus (L. con- 3 Conospermum Proteaceae
ospermj sp. group)
Andrenidae Andrena (Onagrandrena) 24 Oenothera, Cam-  Onagraceae
misonia
Halictidae Lasioglossum (Sphecodo- 8 Oenothera Onagraceae
gostra)
Melttidae Rediviva ~8 Diascia Scrophulariaceae
Macropis 14 Lysimachia Primulaceae
Megachilidae  Lithurge (Lithurgopsis) 9 Opuntia and Cactaceae
other cacti
Apidae Peponapis, Xenoglossa 17 Cucurbita Cucurbitaceae
Melitoma 4 Ipomoea Convolvulaceae

® Several less-studied, small, and likely monophyletic genera of New World bees are likewise composed of oli-
goleges that share a common genus of pollen host. These include the rophitine bee genera Sphecodosma (Nama,
drophyllaceae) and Xeralictus (Mentzelia, Loasaceae); three subgenera of the panurgine genus Calliopsis, Verbena
(Verbena, Verbenaceae), Perissander (Euj;horbia, Euphorbiaceae), Micre dopsis (Trifolium, Fabaceae); and
subgenera of Perdita (118). In addition, several Australian bee genera may be oligolectic for genera of the Mynta

(45).

cola) (4 plant families) (98, 128, 199, 205) and many subgenera of Perdita
(99, 118). How did these disparate floral associations of oligolectic lineages
originate?

Escape from competition is sometimes invoked as driving such radiations
(references in 14, 212). Many oligoleges, however, belong to speciose pollen-
collecting guilds with 75 or more bee species (e.g. 41, 100, 128, 235). Spe-
cialization has not opened empty niches but rather has channeled bees into
bustling guilds. We hypothesize that the immediate ancestors to taxonomically
diversified oligolectic bee lineages were themselves oligolectic. Mechanical '3
factors such as pollen-grain size (e.g. 124) may underlie such switches, but 1
chemical coevolution probably does not explain them (see below). Once es- 3
tablished, new host associations may be enforced by two mechanisms: (a) the
requisite match of phenology and habitat with the new host and (b) a tendency
of male bees to search host flowers for receptive females (124). Both factors
could promote fixation of the new host association once the switch occurred.

CONGRUENCE BETWEEN BEE AND PLANT PHYLOGENIES Probably few host §
associations among oligelectic bees result from reciprocal evolution or cospe- 3
ciation (sensu 28), but relevant data are lacking. Cospeciation between bees
and flowers may be disfavored for two reasons. First, most oligolectic bees do §
not discriminate among congeneric hosts, and so they should readily colonize
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new sister taxa. Examples at the population level include a Vaccinium specialist
that readily adopts another Vaccinium species outside its native range (44).
Secon.d, rates of host switching and evolutionary specialization by bees may
outstrip speciation rates. In the >30,000 years since the progenitor of the desert
shrub Larrea tridentata first appeared in the fossil record of North America
(16), L. tridentata has come to dominate the warmer deserts. It now hosts 22
oligolectic bee species from 8 genera (100) that do not occur on South Ameri-
z:;\;17lz)zrrea species (142, 197) nor on any other member of the Zygophyllaceae
a).

Adaptations for the Maintenance of Oligolecty

MORPHOLOGICAL SPECIALIZATIONS Morphological features used for pollen
collection and transport, such as branched setae, distinguish all bees from
wasps. At a course level, oligolectic bees are usually not recognizable by
chz'lracters other than their limited floral niches. Body size, for instance, seems
unimportant,

Pollen harvest The only known morphological innovations for pollen harvest
by specialists consist of long hairs with modified tips. Such modifications,
usually on the mouthparts or forelegs, have been reported for nine genera (19,
?6, 9411,611)61, 170, 214). Sister taxa using other plants lack such hooked hairs
e.g .

P'ollen transport Hair density and pilosity may conform to extreme pollen
sizes. Bees that carry tiny, dry pollen (<25 pm in diameter) often have dense
scopae of plumose hairs (170, 214). Stout, unbranched, sometimes fluted hairs
typify scopae of bees that carry large pollen (>100 Um in diameter), or ona-
graceous pollen webbed together with viscin threads (94, 118, 170, 214).

Gathering nectar Mouthparts of specialists may be differentially elongated
or shortened to reach nectar concealed in tubular corollas or in shallow, open
flowers (114, 195). Polylectic bees, however, also differ in proportional tongue
lengths, as reflected in the informal divisions of short-tongued and long-
tongued bees (see above) (for functional differences, see 85).

Gathering floral oils The use of floral oils has engendered a rich diversity
of prominent morphological specializations in as many as ten genera (refer-
ences in 33, 201, 220). Bees that collect oils often possess conspicuous setal
brushes and combs on their tarsi and sometimes on abdominal sterna. Some
Rediviva species use remarkably elongate forelegs to probe the twinned, oil-
secreting, elongate spurs of Diascia flowers, which is one of the more persua-
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sive cases supporting morphological coevolution among bees and flowers
(201). Only two genera, Rediviva and Macropsis, are oil specialists (references
in 33, 201).

BEHAVIORAL SPECIALIZATIONS Generalists, but usually not specialists, com-
monly visit flowers with complex corollas (231) that require prolonged trial-
and-error learning for adept handling (e.g. 115). Conversely, specialists often
utilize shallow flowers with easily accessible rewards (e.g. 60, 101, 154, 205,
235).

Floral sonication is a conspicuous and widespread behavioral adaptation
used to harvest pollen from anthers that shed their pollen through terminal
pores or slits (32, 214). Sonication can enhance pollen harvesting (JH Cane,
in preparation). Many bees sonicate by shivering their flight muscles while
contacting the stamens (32, 153, 214). Others drum, stroke, or milk anthers
using their legs or mandibles (41; but see 153).

The propensity to sonicate anthers does not appear related to taxonomic
classifications. However, there are a few patterns. For instance, tiny bees rarely
sonicate anthers. Polyleges in diverse lineages do sonicate anthers using dif-

ferent mechanisms, but oligoleges rarely use novel means of sonication (39).

We know little of the ontogeny and evolution of sonication, its mechanics (but
see 109), or the advantages of different methods of floral sonication.

PHYSIOLOGICAL SPECIALIZATION Nectars are aqueous solutions of simple
sugars that vary in concentration and are readily evaluated by bees (references
in 177). Pollen also varies widely in nutritional composition, including the
content of proteins (169; JH Cane, unpublished data), lipids (56), starches (9),
and sterols (72). Melittophilous pollen is more protein rich than anemophilous
pollen (JH Cane, unpublished data), but some plants (e.g. Helianthus spp.) that
attract many oligoleges (e.g. 100, 101) do not produce especially proteinaceous
pollen (JH Cane, unpublished data).

Bee larvae might be expected to develop best on pollen preferentially col-
lected by their mothers. Some evidence supports a preference-performance 3

relationship; larvae matured faster, grew larger, and survived better on pollen

from their species’ preferred pollen hosts than on other pollens (e.g. 83). |
Conversely, Megachile rotundata larvae grew normally on nonhost pollens
such as carrot and cranberry (VI Tepedino, unpublished data; JH Cane, un- ¢
published data). Larvae of several oligolectic species fed and grew on nonhost ;
pollen as well (21, 178). Even anemophilous pollen constitutes a marginally 3§
satisfactory bee diet (82). Limited evidence suggests that oligoleges do not 3§
generally specialize because of larval dietary requirements or pollen nutritional !

quality.
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Floral oils  Some bees incorporate floral oils into provision masses for larvae
(references in 33, 220). Oils are calorically rich (175) and presumably less
prone to spoilage than nectar. The physiological adaptations of bee larvae
[including cleptoparasites (e.g. 186)] for diets of pollen or oil are unexplored.

Toxic pollen or nectar One hypothesis for food specialization in insects,
namely evolved counter-adaptations to host chemical defenses (references in
14, 15, 84, 104a, 212), does not generally apply to the floral-host associations
of oligolectic bees. Plants that chemically defend their tissues and seeds (e.g.
Solanum, Larrea, Curcubita) usually do not defend their pollen or nectar (e.g.
56, 84, 200). Hundreds of generalist or specialist bee species collect pollen
and nectar from these plants (80, 100, 101, 125, 235). Furthermore, chemically
defended plants often host proportionately more species of specialized herbi-
vores than specialized species of bees (compare 192 with 101).

Some plants have toxic nectar or pollen (7, 9, 56, 84, 200). In general, these
plants (e.g. Ranunculus spp.) are infrequently visited by bees, and few host
oligoleges (125, 209, 235). Most bees simply do not visit plants with toxic
nectar or pollen.

PHENOLOGICAL SPECIALIZATION Bees are largely diurnal. Daily foraging ac-

tivities, as for many insects, seem to be limited by temperature and illumination

thresholds, as well as tolerance of wind and precipitation (50), but few experi-

mental studies have tested these observations (117). Some taxa specialize in

foraging at dawn, dusk, late afternoon (vespertine), or occasionally twice

g;gng the day (69, 119, 127, 128, 149, 155), and others forage at night (174,
).

Diel patterns for provisioning often correspond with the daily initiation,
cessation, or exhaustion of nectar or pollen production at preferred floral hosts
(119, 149, 154, 155). A common pattern among plants is morning floral
anthesis followed by the reduction of standing pollen crops, so early-arriving
bees probably always do better than late comers. The first individual species
of bee to arrive at a given pollen plant is called a matinal bee (119), and these
bees can diminish the standing pollen crop by over a third by the time other
bees arrive (JH Cane & SL Buchmann, unpublished data).

Diel foraging specializations have several anatomical and biogeographical
correlates. Bees that fly at twilight or night have enlarged ocelli and somewhat
paler coloration (references in 174). Matinal temperate bees are typically robust
(119) with a thick pile of thoracic hair; both features are useful for thermoregu-
lation (203). Bees of the lowland tropics (174) or warm deserts (118, 119)
often exhibit matinal habits, and species of matinal genera retain their ancestral
foraging habits in other biomes (102, 126).

Oligolectic species are mainly univoltine; brood production corresponds to
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the annual bloom of their hosts (e.g. 170, 235). However, these species will
still produce only one brood even if the host blooms twice annually (e.g. 101).
Although date of first arrival at flowers is commonly used for evaluating
phenological synchrony, a better measure is the yearly correspondence be-
tween the onset of bloom and bee emergence (149, 158). Oligoleges that
emerge early may seek nectar at other plant species yet will delay nesting or
provisioning until their preferred hosts bloom (44, 61, 149, 205).

In seasonal habitats, plants often do not bloom during a drought. Bees
sometimes skip emergence under these conditions, and facultatively remain in
diapause (see section on natural history). Conversely, a normally univoltine
desert oligolege was observed to have a second annual generation after a freak
summer rain induced its host plant to bloom (98). Unfortunately, abnormal
emergence schedules of oligoleges have not been compared with those of
univoltine polyleges. Detection of any special relationship between oligolecty
and phenological tracking of flowers awaits additional, longer-term studies of
emergence phenologies of univoltine oligoleges and polyleges at common
floral hosts.

HOST RECOGNITION The conclusions regarding floral recognition and dis-
crimination by bees have largely been drawn from the rich literature on nec-
tar-gathering by social bees (see 58). In general, sensory systems do not differ
substantially among bees, although a Petunia specialist has tetrachromatic
photoreceptors rather than the trichromatic ones possessed by 26 other bee
species, including another specialist (163). Spectral sensitivity functions of
photoreceptors do not differ with respect to ecology (163), and the psycho-
physics of color coding may be universal in Hymenoptera (46). Specialists and
generalists have similar densities of antennal chemosensilla (228).

Nevertheless, the relevance of generalizations from social bees to solitary
bees is debatable, because the behavioral context is totally different: Foraging
decisions of solitary bees are not influenced by the social needs of a colony.
Many eusocial species stockpile food in their nests, so individual bees can
temporally dissociate nectar and pollen foraging. Solitary bees, in contrast,
usually do not stockpile food and must gather appropriate resources on a
continual basis. The requisite discrimination capabilities of solitary bees are
not well investigated. Only one study shows that solitary bees can recognize
and respond to differences in the amount of pollen gained per flower (34).
Diel foraging patterns (above) indicate that such capabilities may be more
widespread.

Flower choice may be innate, or it might be learned from the scent of the
bees’ natal provision mass (119). Choice bioassays showed that inexperienced
females of a local specialist (which is polylectic across its range) can discern
the scent of their local floral host from others (55). Adult M. rotundata selected
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flowers of their preferred host, even when reared on a diet of carrot pollen and
nectar. This observation suggests that host recognition is heritable (VJ Teped-
ino, unpublished data). Field-foraging oligoleges may be constant to host
petal-color morphs, but such constancy for visual cues is not universal (57,
130). Additional choice experiments are needed with naive foraging oligoleges
before we can understand the origins and mechanisms of host recognition.

Pathways to Oligolecty

REPRODUCTIVE COSTS AND BENEFITS Oligolectic bees often forage at plants
that have numerous other floral visitors. Observations that females complete
fewer nest cells when resources are scarce, or when abundance fluctuates on
daily or seasonal time scales, point to the costs of specialization (e.g. 20, 21,
34, 117, 149, 154, 158). Oligolectic bees are sometimes more proficient than
competing polyleges in acquiring pollen from host flowers (43, 204). Oli-
goleges that use Vaccinium spp. (JH Cane, unpublished data) acquire as much
pollen per flower as much larger polylectic bumble bees, as true for oligoleges
on Pontederia cordata (86). Another Vaccinium spp. oligolege (Habropoda
laboriosa) harvests as much pollen per flower as polylectic competitors, but
it works faster (43).

Bee species evolve oligolecty via two non—-mutually exclusive paths that
relate to the relative abundance of floral resources. For convenience we name
these the predictable-plethora and the restricted-resource pathways.

PREDICTABLE PLETHORA Many cases of oligolecty likely arose following this
pathway. Plethoric plants are characterized by the following attributes: (a)
production of large quantities of accessible pollen and nectar; (b) local patches
that persist because either the plant is perennial or, if annual, it reseeds locally;
(¢) annual blooms that are reliable relative to nonhosts; and (d) blooms that
coincide with local bee activity. Such plants (e.g. Helianthus spp.) are termed
apparent (73). Their pollen is nutritionally adequate but may be unremarkable.
These plants host taxonomically diverse guilds rich in polylectic and oligolectic
bees, and such guilds may actually intensify competition among bees (170).
Indeed, plants that produce a predictable plethora of pollen and nectar may
act as evolutionary attractors for specialist bees. As bees are central-place
foragers, if they must travel to sparse or widely spaced host patches, they will
complete relatively few nest cells. Bees specialized for locally reliable flowers
can devote more time to provisioning, especially when their emergence or
activity coincides with peak bloom.

Bees are selective nectar foragers, but we do not know whether they recog-
nize the nutritional qualities of pollen. Some social bees feed larvae progres-
sively, such that hungry larvae fed deficient pollen solicit more food (219).
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Most bees store a mass of provisions for their progeny and never receive fllref:t
larval feedback. Oligolectic females disregard interspecific het.e‘rogenelty in
pollen quality, but we do not know whether bee§ that' use nutnn.o.nally poor
pollen compensate for the low quality by providing higher quantl‘tles, analo-
gous to the way most bees match provision mass to sex of offspring (91). If
adult bees cannot compare the nutritional value of different pollen, therg taxo-
nomic fidelity would help them gather resources adequate to s'upport thefr own
development, and polylecty becomes the strategy that requires evolutionary

explanations.

RESTRICTED RESOURCES Some specialists seek out hosts that are minpr ele-
ments of floral communities. Such bee guilds are more depauperate, “{lth few
generalists and perhaps less competition. These specialists are more 111.(el‘y to
possess derived traits for harvesting or using host resources. Host assomapons
are conserved (Table 1), and some may be relictual (166). This pathwa_y mirrors
the “biochemical arms race” (212) herbivory model, except_ that d{etary re-
strictions are generally governed not by antag(.)nistk.: host interactions, but
rather by mutual benefits of host-pollinator relationships.

NATURAL ENEMIES OF BEES

Bees store floral resources for varying lengths of time. Animals that hoard food
have many enemies, and bees are no exception (218). Although tl'le amount (.>f
food stored in a given nest will be small, an aggregatiqn can collectively contain
large quantities (compare 149 with 237). While a solitary bee forages, her nest
cells remain unprotected, unlike those of social bees (140).

The known enemies of bees are too numerous to list. However, an exccllfant
survey of West German bees illustrates their diversity (235; also 9?), which
embodies the following parasitic, commensal, predatory: or scavenging asso-
ciates: fungi, protozoa, nematodes, thomisid spidel"s, dlvx.erse mites, earwigs
(Dermaptera), beetles (Coleoptera, 5 families), flies (Diptera, 6 famll.les),
wasps (11 families), bees (3 families), ants, l?irds, and mammals (for reviews
of their biology, see 29, 48, 63, 68, 78, 79, 93, 97, 196, 108, 121,.13.2, 224).
Parasites are hypothesized to regulate bee population size, but quantitative data
are scarce (see 116, 122, 206, 222, 229).

Foraging Behavior, Habitat Preference, and Parasitism Rates

PROVISIONING SPECIALIZATION Modes of provisioning behayigr influence
bees’ exposure to natural enemies, as does .the foragmg activity (?f other
phytophagous insects (see 14). Polylectic behavior may increase morta.ll.ty froyn
natural enemies encountered on flowers [e.g. some meloid and rhipiphorid
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beetles (121, 129)]. Conversely, specialization may allow such bees to forage
in enemy-free space. Female meloids, for example, were placed in a green-
house with nesting bees and plants from seven genera. Beetle larvae were
recovered only from flowers of Borago spp., and the only parasitized bee nests
contained Borago pollen (216). At this locality, pollen specialists restricted to
other plants would be free of this parasite, while Borago visitors would be
parasitized (see also 123).

NESTING PREFERENCE The choice of nesting location partially determines
which suite of enemies will attack the nest. Some meloid beetles, for example,
oviposit in cells or in nest tunnels. Their larvae attach themselves to bees active
at those sites, restricting the beetles to gregariously nesting bees (68, 118, 120).
Gregarious behavior presumably has the disadvantage of concentrating ene-
mies in a local area (see 118, 223). Some anecdotal observations show that,
on average, nests in aggregations are more heavily parasitized than isolated
ones (e.g. 61, 226). Conversely, other studies show that 100% of the cells of
isolated nests of several species can be parasitized (e.g. 111). Aggregations
can be ephemeral or persistent (see section on overview of natural history),
but we do not know whether persistent ones are more likely to support large
parasite populations.

This frequently discussed relationship between tendency to aggregate nests
and rates of parasitism is difficult to assess for several reasons. First, the
number of taxa that obligately nest in aggregations relative to those that must
nest in isolation is unknown. Aggregated nests are easier to locate and are
probably more frequently reported. To address this problem, we need intras-
pecific comparisons among the many facultatively gregarious species (e.g. 61,
126, 230). Second, the spatial scale used to define an aggregation may not be
relevant to the parasites (see 173). Third, many data on parasitism rates are
point estimates, and the few long-term studies that have been done demonstrate
how such data may not be representative. For a hole-nesting Osmia species,
the rates of cell parasitism by a meloid beetle were usually less than 1% from
1974 to 1989, with a maximum of 3.7% in 1976. During a drought in 1990,
however, parasitism rates increased to almost 33% (216). Within a season,
rates can be equally variable (e.g. 189). Fourth, comparative studies often
combine different host populations or taxa, which can have different numbers
of specialized parasites (see 28).

Michener (143) hypothesized that nests distributed in two dimensions (those
of ground-nesters) should be more heavily parasitized than those distributed
in three dimensions (those of twig-nesters). The hypothesis incorporates con-
siderations from foraging theory and makes two assumptions about information
acquisition and processing (15): (a) Objects distributed in two dimensions are
easier to locate than those distributed in three dimensions, and (b) parasites
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search in both kinds of habitats. Assumption b is true for some parasites but
not for others, including intraspecific parasites (summaries in 75, 135, 174,
224), and parasites presumably have sophisticated host-searching behaviors.
Whether habitat specialists counterbalance each other in tallies of total rates
of parasitism is unknown.

Available data do not support Michener’s hypothesis: The mean rate of
parasitized cells (x) for 27 ground-nesting species was 29.9% (SE =4.6), which
did not differ significantly from the rate for 25 twig- or mud-nesting species
(x = 29.2%) (WT Wcislo, submitted). Within one species, ground nests had
51.8% cells parasitized, while nests in twigs had approximately 36% cells
parasitized, although these nests were at different localities (162). Many data
on twig-nesting bees came from studies of trap nests, which artificially create
aggregations (see 111), and parasitism rates may be lower under more natural
nest densities. Proper tests should be based on comparisons within closely
related taxa, such as twig- vs ground-nesting megachilids, xylocopines, or
colletids (45, 67, 103), and should use data only from natural enemies that
search in both habitats (e.g. some miltogrammine flies).

Strategies Against Natural Enemies

ACTIVE DEFENSE Most solitary bees do not aggressively attack natural ene-
mies that wander too close to nest entrances (e.g. 95, 202), except for intras-
pecific parasites (see below). Active defenses are subtle and include opening
cells for inspection and packing those containing fungi with soil (10). This
behavior may decrease offspring mortality rates, as suggested for some spheci-
forme wasps (70).

PASSIVE DEFENSES Passive defenses involve physical and chemical features
of nest architecture. Some solitary bees, especially those that do not nest in
aggregations, often situate their nest entrances in concealed locations (e.g.
under rocks, within clumps of plants). An Osmia species, for example, nests
in a snail shell it drags to a depression and covers with debris (74). Constricted
nest entrances and turrets may reduce parasitism (126, 138, 202). Nests of
some solitary bees sometimes contain empty cells interspersed between pro-
visioned cells (190, 230), which would theoretically reduce rates of parasitism
(210).

The cells of most bees are lined with chemicals synthesized in the abdominal
(metasomal) Dufour’s gland (59, 87). The chemical composition of these
secretions, which differs among taxa, includes macrocyclic lactones, terpenes,
acetates, and alcohols. Chemical characterization of these compounds has
greatly outpaced understanding of their functional significance. Allodapine
and ceratinine bees have mandibular-gland compounds with repellent proper-
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ties against ants and other enemies (references in 37, 59). Certain mandibu-
lar-gland compounds have germicidal properties (references in 42 59), and
they‘ may help fumigate nests, because secretions can be released dur’ing t;iting
motl(?ns of the kind made during nest excavations. Some megachilid, eu-
glos.sme, and centridine bees incorporate plant resins into nest-cell lin’ings
Resins Physically defend plants and disinfect their wounds (113), and bees.
may gain similar benefits (136; JH Cane, unpublished data; G Gilbert, WS
Armbruster & DW Roubik, unpublished data). ,

Parasitic Bees and Condition-Sensitive Behavior

Close' r.leighbors are often a bee’s worst enemy: Both opportunistic (facultative)
pa}rasmsm (75, 224) and permanent (obligate) parasitic behavior (18, 224) are
widespread. Thus, this array of parasitic specializations provides an excellent
model to study the evolution of condition-sensitive behavior (cf 224,233, 234).

PHYLETIC DISTRIBUTION = Approximately 15% of bee genera or subgenera
contain obligate parasites of other bees (167, 224). A conservative estimate
would be that obligate parasitism has evolved independently at least 26 times
'( 18, 167, 224). Parasitic bees are concentrated in the Apidae (and especially
in the Nomadinae), Halictidae, and Megachilidae. The number of species in a
taxon seems unrelated to the number of parasitic lineages generated by that
taxon. For example, speciose families like Andrenidae lack parasitic bees, and
a smal.l taxon, Ctenoplectrini, contains a parasitic species. ’
Obligate parasitism is also phyletically biased within families. In Halictidae

for exarrfple, parasitic lineages occur in the Halictinae, but not in the Rophitinaé
or Nomiinae (141). Within Halictinae, in turn, the Nomioidini contain no
known pa.rasites, but parasitic behavior has evolved at least eight times in the
cosmpPohmn Halictini. Some lineages (e.g. Sphecodes) contain numerous
pa.ras1tfc species (141; WT Weislo, in preparation). In the equally large but
primarily neotropical tribe Augochlorini, parasitism has purportedly evolved
at lf:ast three times (147; RW Brooks, personal communication), but no be-
havioral data confirm the parasitic status of these species.

HOST-PAI?ASITE RELATIONSHIPS  Lineages of parasitic bees have long been
hypothesgzed to‘bc? related to, and derived from, their host lineages (18, 151,
12{24). This heurfsnc relationship is named Miiller’s Law (165), or Emery’s

ule when applied to ants and wasps (e.g. 93). Phylogenetic studies are not
yet numerous enough for statistical tests of this hypothesis, but it is valid in
Some cases, and certainly invalid for lineages with many host shifts

: e.g.

nomadines) (references in 171). ’ (o8 many

Parasites differ in the degree of host specificity, even among congeners (e.g.
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182; for other host associations, see 3, 4, 141, 167, 174, 184, 185, 202, 235),
Apparent specificity may simply represent lack of information. Cladistic stud-
ies have demonstrated generic-level host shifts for various parasites (e.g. 3, 4,
182). Hosts shifts, like some parasite-host associations (e.g. 193), tend to be
habitat specific. A few parasitic bees regularly associated with twig- or ma-
son-nesting bees have shifted to ground-nesting bees, and vice versa (e.g. 11),
L-T bees have expanded their host ranges to parasitize S-T bees, yet no S-T
bee, not even the large, cosmopolitan genus Sphecodes, parasitizes L-T bees
(WT Wecislo, unpublished data). The historical biogeography of bees (142) is
not well-enough known to assess whether this pattern is related to the relative
ages of these groups.

Some speciose taxa appear to be immune to bee parasites (167, WT Wcislo,
unpublished data). No known hosts occur in Stenotritidae, Xeromelissinae,
Euryglossinae, Diphaglossini, possibly Hylaeini [there is an unconfirmed re-
port (241) of parasitic Hylaeini in Hawaii, which purportedly parasitize other
hylaeines], Ceratinini, Xylocopini, Manuelini, Apini (excluding robber spe-
cies—see 174, 224), Fideliinae, or Meganomiinae. Many of these taxa are
abundant in Australia (45), which may partially account for their apparent
immunity because the rich Australian bee fauna is curiously depauperate in
parasites (except Allodapini) (224). A detailed comparative study of immune
and susceptible taxa may lend insight into the evolution of parasitic bees.

HOST RECOGNITION, ASSESSMENT, AND NEST-ENTERING BEHAVIOR  The mech-
anisms by which parasites recognize their host(s) have been studied in only
one species, and this report showed the importance of olfactory evaluation
(36). In addition, adult Stelis montana are known to ascertain whether a host
cell is suitably provisioned (215), but most species have not been studied. The
mechanisms for entry into a nest also are not well studied. Some parasites
aggressively enter nests (194), while others avoid contact with a host (e.g. 1,
194, 215).

Parasitic Nomada spp. males have an odor bouquet similar to that of host

females; hypothetically, these males transfer this odor to conspecific females

during mating, thus enabling the parasitic female to more easily enter the host
nest (references in 59). No behavioral data are available to support these
hypotheses. No evidence supports chemical mimesis in other parasitic bees
(see 194, 208).

Many parasites place their eggs in concealed locations within cells (repre-
sentative illustrations are given in 167, 174, 202). Most nomadines oviposit in
a cell wall before the cell is fully provisioned (183). This hiding is common
in parasites. Stelis species oviposit within the host pollen mass, and Coelioxys
species oviposit into the leaf mass that surrounds the cell of its megachilid
host. When parasite larvae (e.g. Nomadinae) are in the same cell as living host
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eggs or larvae, the parasites destroy the host larvae. For example, some parasite
larvae undergo hypermetamorphosis to a “killer” instar, which actively crawls
about the host cell and kills the host egg or larva, as well as other parasite
larvae (180, 181). After dispatching its competitors, the killer larva molts to
a typical grub-like bee larva. In other species, the adult parasite destroys the
host egg or young larva. The parasite larvae of these taxa are not morphologi-
cally differentiated from host larvae (137) and are not active crawlers,

CONDITION-SENSITIVITY AND THE EVOLUTION OF PARASITISM Changes in con-
text-dependent expression are increasingly recognized as a basic feature in the
evolution of diversity (e.g. 225, 233, 234). The perceptual mechanisms that
animals use to assess local conditions and implement alternative behaviors are
poorly understood (see 15). The frequent evolution of obligate parasitism from
facultative behavior in bees allows us to redress this situation.

Facultative parasitism Facultative parasitic behavior is generally thought to
represent an evolutionary precursor to obligate parasitism (e.g. 18, 75, 224,
233). Kaitala et al (105) argue the two phenomena are unrelated, presupposing
that pollen-collecting structures are lost concomitant with the origin of parasitic
behavior. This presupposition is inconsistent with facts. Among parasitic Para-
lictus, for example, different species have lost pollen-collecting structures to
differing degrees (141; WT Weislo, in preparation), which shows that behav-
ioral and morphological evolution can be uncoupled.

Factors that induce facultative parasitic behavior may include a failure to
resorb developing oocytes (references in 224). A shortage of nest sites has
been widely implicated in facultative parasitism in nest-making animals (ref-
erences in 224), but its relative importance is unknown for bees. A shortage
of nest sites, or loss of a nest because of predation or other factors, may be
less important in lineages that have open, communal groups (1, 53,112, 179,
227) because a female could join another group. Joining behavior (but not
necessarily in relation to nest loss) has been confirmed by genetic studies (53,
1 1.2). The open nature of communal living possibly helps explain why lineages
with widespread communal behavior (e.g. Andrenidae, Agapostemonini) have
not generated many parasitic lineages.

Obligate parasitism and expression of morphological novelty Obligately par-
asitic female bees frequently (but to differing degrees) show a suite of external
Characters putatively related to their parasitic behavior (e.g. loss or reduction
of pollen-collecting structures, loss of a toothed mandible, reinforced exoskele-
ton, changes in proportion of antennal structures, bright or metallic coloration)
(see 141, 224, 228). Nothing is known about the evolutionary origins or
development of such structures.
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Some external features (e.g. loss or reduction of pollen-collecting structures,
loss of toothed mandible, relative lengths of the antennal scape and flagellum)
seem to represent the masculinization of the female phenotype (141, 228). Sex
transfers of phenotypic development patterns have been discussed for other
insects (e.g. 47, 107). Strepsiptera parasitism (191) and other pathologies (240)
can induce various degrees of masculinization. In Andrena vega stylopization
decreases the volume of the corpora allata (26) and probably reduces titers of
juvenile hormone (JH). Bonetti & Kerr (23) show that male larvae treated with
topical JH are feminized as adults. Thus, studies of stylops and other pathogens
reveal the potential of developmental systems to express preexisting traits
under novel conditions.

Obligate parasites have also undergone evolutionary changes in ovarian
physiology and morphology (references in 6). Parasitic bees have either a
greater number of oocytes per ovariole or a greater number of ovarioles per
ovary, relative to the putative ancestors. Associated with this increase in
fecundity is a relative decrease in egg size. Rozen (183) hypothesized that the
smaller size of parasite eggs is related to the need to hide eggs within a host
cell. Smaller egg size is also expected from the decreased parental investment
per egg, according to arguments associated with r- and K-selection (131).

SUMMARY

The spatial distribution of bees influences interactions with parasites and
intraspecific competitors for food. The study of many resource-specializing
(oligolectic) bees allows us to make illuminating comparisons with other
phytophagous insects, because bees provide an indirect service (pollination)
to the plant, unlike herbivores. Hypotheses proposed to explain resource spe-
cialization among other phytophagous insects are not generally applicable to
bees. Instead, diverse oligolectic (and generalist) bees utilize resources from
flowers that are predictably abundant in time and space. Apart from phenologi-
cal matching, these oligolectic bees usually do not have striking behavioral,
physiological, or anatomical modifications associated with their specialized
behaviors. Some cases of bee specialization, however, are probably explained
by analogy to the biochemical arms race models proposed for herbivores. Bees
that are oligolectic on rare and patchily distributed plants often possess specific
behavioral or anatomical keys that allow them access to pollen, nectar, or oil
that a plant has locked away. Resources stored by bees present a rich target
for natural enemies. Natural history observations suggest these enemies have
shaped bees’ foraging behavior, nest architecture, and nest-site selection. Op-
portunistic, facultative parasitism is common in bees, and obligate parasitism
has repeatedly evolved. The convergent phenotypes of parasitic bees yield
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insights into the relationship between the evolution of condition-sensitive
behavior and morphology and the expression of novel combinations of traits.

Comparative studies of bees provide exceptional opportunities to those
interested in merging natural history studies with research addressing under-
lying mechanisms. We know a good deal about what bees do, but we know
little about how they do it, and therefore we can only speculate about why.
Significant advances in understanding “why” questions are likely to come from
those areas that address the “how” questions.
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